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Depletion forces in hard-sphere colloids
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A system of monosized hard spheres is studied to elucidate the nature of entropic depletion forces. Our
calculations include effective forces between two spheres, a hard sphere and a wall, and the behavior near a
step edge and a corner. Qualitative differences between our results and those of the Asakura-Oosawa theory are
found. We also demonstrate the nonadditivity of such entropic forces in a simple example.
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The role entropy plays in condensed matter systems
be counterintuitive@1–5#. One might presume that a cryst
is held together by the attractive forces between its cons
ent molecules, yet it is now well established that a collect
of particles interacting with each other via a purely repuls
hard-sphere potential crystallizes at a certain density in o
to increaseits entropy. A similar ‘‘surprise’’ can occur in a
binary mixture where the increase in the entropy of one co
ponent of the system may force another component tow
a greater order. These entropic depletion effects are
known to lead to phase separation in colloids and emuls
of large and small particles with short-range repulsive int
actions@1–3#, and are relevant in paints and catalytic sy
tems@4#. It is believed that the aggregation of red blood ce
related to various illnesses is induced by the entropic for
associated with increased concentrations of protein m
ecules in blood@5#.

In this paper, we demonstrate the complexity of the str
ture of entropic forces and potentials within the context
the simplest possible system made up of monosized h
spheres. Despite the simplicity of our molecular dynam
simulations, to our knowledge, we present the first dir
calculations of these forces. Even though more complex
tems have been addressed before using Monte Carlo sim
tions and analytical theories@6–9#, the intrinsic assumptions
and approximations present in those methods require in
pendent testing. Depletion forces in complex geomet
with step edges@10# and nontrivial curvature@11# have been
measured and argued to have profound consequences fo
lular biology @11# and entropic control and directed motio
of colloidal particles@10#. Our simulations lend themselve
easily to different geometries and enable the study of
forces near a step edge and a corner. Finally, we also d
onstrate the inherent nonpairwise additive nature of deple
forces.

A successful attempt at predicting and explaining entro
forces was made by Asakura and Oosawa@12# ~AO!. They
consider bodies in a solution of macromolecules or simpl
system of larger and smaller particles. Assuming that al
the particles have a hard core, each large particle is
rounded by an exclusion volume where small particles c
not enter. Because the entirely entropic free energy of
small particles depends on the free volume accessible
PRE 591063-651X/99/59~2!/1339~4!/$15.00
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them, the configurations where the exclusion volumes
large particles overlap are more favored. Hence, there
short-range force, pushing the large particles toward e
other. A large sphere is pushed toward a wall by a sim
mechanism. Quantitative AO calculations ignore the inter
tions between the small spheres completely, and even tho
an overall acceptable experimental agreement with the
prediction has been reported@10,11,13,14#, the ideal gas ap-
proximation based AO theory does not provide a satisfact
description of entropic potentials and forces in dense col
dal suspensions.

Going beyond the simple geometric arguments of AO
quires a detailed theory for the structure of a binary flu
because the entropic potential is obtainable from the in
species two-point distribution function. Even though sign
cant progress has been made@6–9#, this is a difficult task for
arbitrary densities and large-sphere–small-sphere diam
ratios either analytically or numerically. Thus, we consid
the simplest situation in which all of the spheres are of
same size.

Entropic forces are usually discussed within the contex
binary mixtures~they are most useful there! but one can also
introduce the concept for a monosized system. There
benefits in doing so. There exist numerous thorough stu
of monosized hard-sphere systems. A presentation of the
isting well-established information in the framework
depletion forces elucidates many of their general featu
For a monosized hard-sphere system, the depletion forceF,
is simply the potential of mean force, which, by itself, can
easily found from the pair-distribution function,g, as
F/kBT5$] ln@g(x)#%/]x, wherex measures the distance b
tween two spheres@15#. As an example, the force betwee
two spheres, when the packing fraction of the surround
fluid is f50.45, is shown in Fig. 1. One can also measu
the force directly in molecular dynamics simulations@16#,
and our results, from direct force measurements where
register the momentum transfer to a sphere per unit time,
also plotted in the figure.~Throughout the text, the data ar
reported in standard units where the diameters and massm
of a sphere, as well as the thermal energykBT, wherekB is
the Boltzmann constant andT is the temperature, are all 1!
Analogously, the depletion force between a wall and
sphere can be derived from a density profile. We show
R1339 ©1999 The American Physical Society
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force as a logarithmic derivative of the density as well
obtained from direct momentum transfer measurement
Fig. 2. Our simulations were carried out with 108 ha
spheres at a packing fraction of about 0.45.

It is clear that, by ignoring the correlations in the su
system of smaller particles, AO theory eliminates the po
bility for the complex structure these forces really have. Y
naturally, as experimental conditions approach the ideal
limit, the applicability of the predictions of the AO theor
improves. In general, though, AO theory underestimates
magnitude of depletion forces at contact, ignores their os
latory nature, and underestimates their range. These tr
worsen as the density of the small particles increases.

Recently Kaplan, Faucheux, and Libchaber@17# reported
a large discrepancy between their experiment and the
prediction that surprisingly indicates that the AO theo

FIG. 1. Depletion force as a function of the distance betwe
two hard spheres in a mixture of other hard spheres of the same
at a packing fractionf50.45.

FIG. 2. Depletion force between a hard sphere and a hard
in a mixture of other hard spheres for the system described in
text. The walls are placed such that the region accessible to
centers of the hard spheres ranges from22.37 to 2.37.
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overestimates the contact value, and increasingly does
at higher densities. The method Kaplan, Faucheux,
Libchaber use for measuring entropic potentials is ingenio
By tracking the trajectory of a large sphereparallel to a wall,
they probed the depth of the entropic potential wellperpen-
dicular to it. This method relies crucially on the dependen
of the diffusion coefficient of a particle parallel to the wa
on its distance from a wall@18#. We can test this assumptio
as our system satisfies this essential requirement@19# ~even
though the diffusion mechanism is fundamentally differe!
and we, therefore, performed a similar measurement in
simulations.

In Ref. @17#, the depth of the potential well,dF, near a
wall was calculated from Kramers timet5tFedF/kBT, where
tF is the inverse frequency of escape attempts andt is the
escape time. The latter was identified with a crossover t
below which diffusion, parallel to the wall, needed to b
characterized by two distinct diffusion coefficients and abo
which one effective diffusion coefficient sufficed. When w
estimatet according to this prescription, we obtain an unre
sonably low value of 0.3 mean collision times, whereas
actual measurement of this time~by simply measuring the
average time it takes for particles to escape from the po
tial well, associated with the first layer next to the wall, sta
ing from a randomly chosen equilibrium configuration! gives
a value larger by three to four orders of magnitude. We c
conclude that, for our miniscale pure hard-sphere syst
this type of analysis is not useful.

We can also readily follow the trajectories of our particl
parallel to the wall as was done in the experiment—comp
the top curve of our Fig. 3 to Fig. 3 of Ref.@17#. One might
be tempted to find trappings perpendicular to the wall fro
these parallel trajectories following Ref.@17#. However, the
true trapping events, as obtained from a direct study of
trajectories of the particles perpendicular to the walls, donot
necessarily correspond to situations in which the parallel m
tion is inhibited. In other words, there can be significa
motion parallel to the walls even when a particle rema
within the first layer next to the wall. Likewise, the situatio
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FIG. 3. Time series of particle displacements, parallel (y) and
perpendicular (x) to the wall. Note that the time intervals in whic
the particle does not undergo significant parallel displacemen
not correspond to trapping near a wall.
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in which the parallel motion is arrested does not preclu
significant perpendicular~to the wall! movement.

Depletion forces in complex geometries are beginning
receive increasing attention@10,11#. The AO calculations of
entropic forces and potentials in these geometries are sim
to carry out, while more precise predictions quickly beco
rather laborious and, to our knowledge, have not been
cessfully completed. By the virtue of having a simpler sy
tem to work with than a binary mixture, we can study dep
tion forces in regimes that have not been accessed be
Properly generalized, these results can be a useful guid
what to expect and search for in real systems. As an
ample, we obtained the equilibrium density for a system
324 hard spheres at a packing fraction of about 0.45 i
T-shaped channel~see Fig 4!. For this system, the potentia
near step edges and corners~see Fig. 4! is of principal inter-
est and is shown in Fig. 5. A comparison with the AO p
diction is also shown in the figure. The potential barrier
pelling a hard sphere from a step edge is simply a reflec
of the density decrease near it. Analogously, the poten
minimum attracting particles towards a corner and the sh
increase in density there are different manifestations of
same effect. The earlier conclusions that we drew about
differences between AO theory and more precise simulat
are valid here as well.

Yet, an interesting and fundamentally important feature
depletion forces manifests itself already in the A
approach—depletion forces need not be pairwise additive
the AO approach, the force between two particles arises f
the overlap of excluded volumes. Three-body effects beco
relevant when the hard spheres are considered in config
tions in which their pairwise overlap volumes themselv
overlap, resulting in an overcounting of the actual over
volume. An example would be a configuration where th
spheres are located at the vertices of an imaginary equila
triangle of edge equal to the sphere diameter. The AO p
diction for this geometry can be easily calculated. For
packing fractionf50.45, the AO two-body force at two
sphere contact isFAO522.0. If forces were additive, the
magnitude of the total force on a sphere in this triangu
configuration would be 2FAO cos(p/6)523.5. Instead,

FIG. 4. Density profile for a hard-sphere fluid confined in
T-shaped channel with translational invariance in thez direction. To
form the channel, thermal walls were placed in they-z plane atx
5L1s/2; x52L2s/2 for uyu,L/21s/2, x52s/2 for uyu
.L/21s/2; and in thex-z plane aty5L/21s/2 and y52L/2
2s/2, both forx,2s/2. Periodic boundary conditions were use
otherwise.L54.74s. s is the hard-sphere diameter.
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when all overlap volumes are correctly accounted for,
AO-like analysis predicts a force of22.9. Theexactthree-
body force can, in principle, be found from a three-poin
correlation function, but obtaining reliable statistics for th
measurement is rather time consuming. Instead, we prepa
the described triangular configuration and measured the m
mentum transfer on each of the spheres in a simulation. T
two-body force at contact forf50.45 is Fsim526.8
~see Fig. 1!. The actual measured force,210.0, is again
noticeably lower than the additive pairwise force
2Fsim cos(p/6)5211.8. Indeed, the three-body compone
for our system of hard spheres is a significant percentage
the total force@9#. Pairwise additivity of forces is an integra
part of many theories. When depletion forces are consider
this crucial property cannot be taken for granted.

This work was supported by the NSF GRT Program a
funds from NASA, Center for Academic Computing at Pen
State, and the Petroleum Research Fund, administered by
American Chemical Society.

FIG. 5. ~a! The effective potential alongx50 ~see Fig. 4!,
showing a significant barrier at the edge.~b! The effective potential
for x52L ~see Fig. 4!, displaying a minimum in the corner.
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